Regional Homogeneity: A multimodal, multiscale neuroimaging marker of the human connectome
Published in The Neuroscientist, 2016
Recommended citation: Lili, Jiang; Xi-Nian, Zuo. (2016). Regional Homogeneity: A multimodal, multiscale neuroimaging marker of the human connectome. The Neuroscientist, 22(5):486-505. https://journals.sagepub.com/doi/10.1177/1073858415595004
Much effort has been made to understand the organizational principles of human brain function using functional magnetic resonance imaging (fMRI) methods, among which resting-state fMRI (rfMRI) is an increasingly recognized technique for measuring the intrinsic dynamics of the human brain. Functional connectivity (FC) with rfMRI is the most widely used method to describe remote or long-distance relationships in studies of cerebral cortex parcellation, interindividual variability, and brain disorders. In contrast, local or short-distance functional interactions, especially at a scale of millimeters, have rarely been investigated or systematically reviewed like remote FC, although some local FC algorithms have been developed and applied to the discovery of brain-based changes under neuropsychiatric conditions. To fill this gap between remote and local FC studies, this review will (1) briefly survey the history of studies on organizational principles of human brain function; (2) propose local functional homogeneity as a network centrality to characterize multimodal local features of the brain connectome; (3) render a neurobiological perspective on local functional homogeneity by linking its temporal, spatial, and individual variability to information processing, anatomical morphology, and brain development; and (4) discuss its role in performing connectome-wide association studies and identify relevant challenges, and recommend its use in future brain connectomics studies.
Read this paper via the Open Access at SAGE
Recommended citation: Lili, Jiang; Xi-Nian, Zuo. (2016). Regional Homogeneity: A multimodal, multiscale neuroimaging marker of the human connectome. The Neuroscientist, 22(5):486-505.