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It is of great scientific and translational promise to formulate a
normative reference for the lifespan development of human brain
to precisely quantify individual differences. By aggregating more
than 120,000 brain imaging scans across the world, the Lifespan
Brain Chart Consortium (LBCC) recently published brain charts
for the human lifespan in Nature [1]. These charts (two examples
showed in Fig. 1a) have revealed previously undocumented neu-
rodevelopmental milestones, marking a research model on team
working for the neuroimaging community towards population
neuroscience [2]. The LBCC team demonstrated that after decades
of advancement and accumulation in technologies, methods, and
resources, we now have a tangible opportunity to achieve transla-
tional science for brain health. Accordingly, the World Health Orga-
nization has articulated the great clinical and public health
relevance of lifespan brain charts in its recent position paper [3].

Despite the impressive advances, there is still a non-negligible
gap between this seminal paradigm on basic research of brain
charts and their translational applications, calling for great com-
munity efforts to address translation barriers. To guide gap-filling
research on translational brain charts (TBC), we outline 6E (Exploit,
Evaluate, Explore, Eliminate, Estimate, and Establish) efforts that
we regard as “cornerstones” of TBC research here (Fig. 1b). Among
the spectrum of multidisciplinary efforts, the first three corner-
stones dissect aspects that require in-depth evaluation (with an
emphasis on neuroscience research), the next two cornerstones
point to the need for careful modeling with the acquired data
(which relies heavily on statistics & algorithms), and the last
cornerstone suggests extensive collaborations with open platforms
(to facilitate interdisciplinary research).

We expect that the six mutually supporting principles will
prospectively inspire future TBC research practices, solidify TBC
foundations, and accelerate the realization of clinical research
and diagnosis with TBC. We believe that in reaching eventual
translations, both basic and clinical research can promote each
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other, leading to breakthroughs in developmental population neu-
roscience [4].

Cornerstone 1: exploit optimal sampling strategies to obtain repre-
sentative samples according to application needs. Missing represen-
tative samples is a main factor hampering the construction of
TBC. While the LBCC team pooled worldwide available data with
a very large sample size, the samples still lack representativeness.
Sampling for TBC should follow methodologies from demography
and survey research, considering handedness, education, and other
sociodemographic and clinical characteristics [5]. Similar sample
sizes should be collected for different sexes, and the proportion
of samples in an age group to the total sample size should be deter-
mined by the distribution patterns and age-related changes of the
measurements. For cross-sectional data, studies have shown that
generalized additive models for location, scale, and shape
(GAMLSS) require tens of thousands of samples to accurately
model simple growth reference charts (e.g., reference centiles for
weight). Given the more sophisticated distributions and trajecto-
ries of brain metrics, and the lower measurement reliability, the
required sample size for TBC would be even larger. Acquiring lon-
gitudinal measurements can reduce the required sample size, but
how much the sample size can be reduced depends on the specific
longitudinal design (accelerated or single cohort for a certain age
range), including longitudinal time interval, total duration,
expected dropout rate, proposed modeling approach, etc. Note that
dropout may compromise sample representativeness and counter-
measures should be considered accordingly. The design of these
conditions still needs to be optimized by exploration in silico and
on real datasets.

Practical sampling strategies can be roughly divided into two
paths according to application needs. The first path targets regions
or ethnic groups with large populations, collecting very large-scale
cross-sectional data to adequately sample the population of inter-
est, avoiding dropout issues and reducing logistical challenges. The
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Fig. 1. Brain charts and their cornerstones. (a) The lifespan brain charts are constructed and depicted with the five centile curves for the pars opercularis cortex (pink, female)
and the caudal anterior cingulate cortex (blue, male); (b) The spectrum of six cornerstones for translational brain charts. y: years.

brain charts modeled in this path will be of reference significance
to a wide range of populations. Furthermore, very large sample
sizes increase the feasibility of modeling multivariate features
(see Cornerstone 5), allowing the exploration of latent multivariate
associations over the lifespan. The second path targets specific
populations in specific age ranges, such as young professional ath-
letes or indigenous adolescents living at high altitudes, with longi-
tudinal measurements of moderate sample sizes to meet specific
application needs.

Cornerstone 2: evaluate the reliability of metrics not only between
but also within individuals or states. Concerning reliability, test-ret-
est reliability is generally considered [6,7], where high reliability
requires low intra/within-individual variability and high inter/be-
tween-individual variability. For TBC, it may be particularly neces-
sary to control covariates such as age and sex whenever possible
when evaluating inter-individual variability. Here, we note that
inter-state (e.g., between ages or between clinical characteristics)
variability should also be evaluated according to application needs
of TBC, based on within-individual (i.e., longitudinal) or between-
group comparisons. Intra-class correlation is a commonly used
index to quantify reliability, which is defined as the ratio of the
variance between classes (e.g., between individuals or between
states) to the total variance. A more recently proposed index, dis-
criminability, can be used as an alternative to better deal with
non-Gaussian distributions [8]. An immediate benefit of increasing
measurement reliability is that the required sample size can be
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reduced for a given effect size and statistical power. Reliability is
also a necessity for validity (see Cornerstone 3), and thus the neu-
roscience community has increased its focus on reliability assess-
ment in the last decade [7]. Morphological magnetic resonance
imaging (MRI) measurements have almost perfect measurement
reliability for core metrics, which is a key reason why the LBCC
team focused on morphological development by leveraging brain
chart models [1].

It is imperative to develop more reliable neuroimaging met-
rics for TBC research (e.g., reliability >0.8 to serve the clinical
standard). More anatomical MRI metrics seem reliable and worth
further investigation. Functional MRI (fMRI) studies have pro-
duced massive metrics but were bottlenecked by the conver-
gence into reliable and uniform measurements of the human
brain function (see Ref. [9] for recent advances and exceptions).
The gradient metrics of functional connectivity have been shown
to well reflect the intrinsic brain hierarchy [10], which are rele-
vant to cognition, psychopathology, development, and evolution
(see reviews in Ref. [10-12]). There is also potential to develop
reliable metrics related to lifespan development from other brain
imaging techniques (e.g., magnetoencephalography or functional
near-infrared spectroscopy). These methodologies should lever-
age novel interdisciplinary frameworks for psychometric assess-
ment to improve reliability, posing challenges and
opportunities for optimizing the diverse algorithms and hyperpa-
rameters involved.
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In addition to the derivation and evaluation of the metrics
themselves, attention should be paid to improving the data collec-
tion, preprocessing, and standardization strategies before con-
structing the metrics, which will generally improve validity but
may occasionally lead to trade-offs between different factors of
reliability (e.g., removal of reliable individual differences in con-
taminants can lead to reduced inter-individual variability but
increased inter-state stability for certain states of interest). Reduc-
ing head motion and increasing scan duration generally improves
reliability while states of eyes can have distinct impacts on differ-
ent forms of variability of resting-state fMRI measurements. In pre-
processing and standardization, better denoising and registration
algorithms would be helpful (see Cornerstone 4).

Cornerstone 3: explore valid factors that are sensitive to cross-sec-
tional and longitudinal variations of interest. Since it is particularly
difficult to determine validity in behavioral and social sciences,
various indirect forms of validity have been proposed, which can
also be found in neuroscience [7]. For example, criterion validity
is the agreement with the gold standard, predictive validity is
the ability to predict (e.g., predict behavioral scores with brain
metrics), and face validity is the agreement with common sense.
Rather than diving into definitions of various forms of validity
and attempting to tease out their implications in the context of
TBC research, we will analyze the exploration of valid biological
factors relevant to TBC research from two aspects. The first will dis-
cuss ways to bridge the gap between reliability and validity. The
second will address the specific requirements of TBC for validity
and how TBC can contribute to valid findings in neuroscience.

First, bridging the gap between reliability and validity is desir-
able for various translational applications. Recent advances have
led to an emphasis on the compromises that sometimes exist
between reliability and validity [13]. For instance, head motion
may be associated with certain individual traits, and thus exclud-
ing samples with severe head motion can improve reliability but
may reduce external validity (i.e., the generalizability). In fMRI,
restricting head motion may lead to atypical states of functional
activity and reduce validity. It would be better not to overly restrict
participants’ head motion, but to introduce prospective motion
correction methods, tracking motion during acquisition to maxi-
mize the quality of raw data. Head motion is also a typical factor
that varies with age, and such factors would be significant con-
founds in brain charts and should therefore be carefully eliminated
(see Cornerstone 4). However, the observed trade-offs between
reliability and validity are in many cases due to the neglect of other
forms of variability beyond inter-individual variability. As men-
tioned in Cornerstone 2, within-individual and between-group
comparisons can also be performed to evaluate variability between
states such as between behavioral traits. In this way, what really
exists is a trade-off between different forms of variability rather
than a fundamental trade-off between reliability and validity. We
can always construct tailored forms of variability according to
the specific context of TBC research to narrow the gap between
reliability and validity, and increase the potential for extracting
biological factors associated with the variations of interest (e.g.,
variations in genetic and environmental factors).

Second, there is an upward spiral between TBC research and the
exploration of valid factors. Going beyond simple indices for relia-
bility evaluation, valid factors can be identified by combining
cross-sectional (both inter-individual and between-group) and
longitudinal studies to comprehensively examine the sensitivity
of reliable metrics (e.g., with predictive models for brain-wide
associations). In this framework, we can conduct and synthesize
multiple studies to construct valid metrics for TBC with corre-
sponding application needs. Furthermore, we can derive centiles
of individuals with constructed brain charts, and investigate the
relationships between longitudinal centile score changes and vari-
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ations of interest to assess, screen, and optimize metrics for TBC.
This means that the research on the validity of TBC will not be
one-size-fits-all and will require continuous iteration to improve
research and application practices. Finally, TBC integrate the most
basic and robust development-related variations, offering novel
opportunities to harness differences in age and explore dynamic
brain-behavior relationships. Specifically, TBC can serve as “micro-
scopes” to precisely quantify relative scores of metrics for individ-
uals by interpreting and removing age-related population trends,
allowing more subtle effects to be observed, leading to more valid
cross-sectional and longitudinal brain-wide association studies
(BWAS), and promoting basic and translational neuroscience.

Cornerstone 4: eliminate confounds caused by suboptimal sampling
and irrelevant changes over the lifespan. Even with reliable and valid
data collected from representative samples, further investigation
and elimination of multiple sources of confounds before or during
modeling can still substantially improve the quality of the con-
structed brain charts (see Table 1 for an overview of major con-
founds in TBC research). Here, we divide the confounds into two
types. One is related to suboptimal sampling, which underscores
the importance of optimizing the sampling design, calibrating
image acquisition conditions, and harmonizing random effects.
The other is largely related to irrelevant changes over the lifespan,
which confounds the detected age effects in TBC and can often be
mitigated by careful refinement of the data processing protocols.

For the collected samples, the representativeness of the samples
should be reassessed after quality control, and sub-selecting or
supplementing samples may be considered if necessary. Moreover,
cohort effects can lead to tricky confounds. For cross-sectional or
accelerated longitudinal designs, cohort effects refer to the differ-
ences in birth years of individuals, leading to systematic differ-
ences in their growth environments and experiences, which can
be evaluated and modeled (and thus eliminated) by leveraging lon-
gitudinal measurements. Confounds may also arise in long-term
follow-up, i.e., due to scanner hardware and software changes as
well as operator inconsistencies, which can be mitigated by stan-
dardizing experimental protocols and with statistical harmoniza-
tion. Another confound, which is also usually mitigated with
statistical harmonization, is the scanner effects, arising from differ-
ences between scanners. However, statistical harmonization is
unlikely to completely remove scanner effects, but may instead
remove meaningful differences between populations. In this
regard, it would be helpful to coordinate hardware and software
across scanners, as well as employ consistent data acquisition
parameters. Furthermore, advanced quantitative MRI techniques,
such as scanner calibration with “phantoms”, can be introduced
to correct inter-scanner variations at the level of imaging systems
and algorithms.

For the data processing protocols, it is necessary to consider
whether the pipelines can accommodate systematic differences
between age groups. The brains of fetuses, children, and the elderly
are morphologically distinct from those of young adults. The algo-
rithms used, if not validated and optimized for different age
groups, may result in systematic biases that can seriously compro-
mise the validity of brain charts. For instance, it has been shown
that developing different templates for populations of different
ages and cultural backgrounds is necessary [14], which will
improve the quality of brain image processing and TBC modeling.
Also, given the differences in head motion and various physiologi-
cal variables across ages [15], the algorithms used to reduce these
confounds must be systematically evaluated with samples over the
lifespan.

A final remark is that brain charts provide a unique opportunity
to parse controversial confounds from a lifespan perspective. One
example is whether individual differences in intracranial volume
or whole brain volume should be standardized. Studies have
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Table 1
Major confounds in TBC research.
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Confounds Descriptions

Elimination/mitigation approaches

Non-representative samples

Even if the raw samples are representative, the samples may

Sub-selecting or supplementing samples

be non-representative after quality control

Cohort effects

Inconsistent image acquisition conditions

Pipelines not generalizable to different ages

Head motion

Differences between age groups related to unique
experience/exposure, but not age

Changes in scanner hardware and software, differences in
instructions of operators and placement of individuals, etc.

For instance, templates based on specific age groups, and the
related denoising, segmentation, and registration algorithms
Head motion varies significantly across age groups, thus

distorting the detected age effects

Physiological variables

over the lifespan

Changes in variables such as breathing rate/depth, heart rate,
blood pressure, and arterial carbon dioxide concentration

Evaluating and modeling with longitudinal
measurements

Standardizing experimental protocols, calibrating
images across dates and scanners, and harmonizing
pooled datasets

Optimizing validity of pipelines across ages and
populations

Mitigating head motion effects with prospective and
retrospective motion correction methods

Measuring various physiological variables and
developing algorithms to effectively compensate the
effects of these variables

shown allometry in brain development, and thus linearly adjusting
brain structure metrics may impair the validity. A better approach
would be to model the joint distribution of whole brain volume
and a specific structural metric with brain chart models, so as to
better understand the dynamic relationships between whole brain
volume and various structural metrics.

Cornerstone 5: estimate data distributions and derive centiles with
flexible yet intrinsically interpretable models. We prioritize the
intrinsic interpretability of the models used to estimate data distri-
butions and derive centiles over other requirements, such as flex-
ibility, to ensure that the models allow for accurate
troubleshooting and refinement, thereby improving their external
validity. Distributional regression approaches, represented by
GAMILSS, are intrinsically interpretable and highly flexible in cap-
turing nonlinear trajectories and estimating higher-order statistics
of data distributions with centile curves, as demonstrated in
Fig. 1a. GAMLSS has been utilized in an early TBC effort to chart
morphological development from 6 to 85 years old (https://
github.com/zuoxinian/CCS), and is also leveraged by LBCC to
uncover the neurodevelopmental milestones across the human
lifespan (0-100 years old) [1]. The flexibility of the distributional
regression framework allows it to combine advances in statistical
learning, thereby better accommodating sophisticated data struc-
tures and random effects (e.g., scanner effects) with good inter-
pretability [16].

For future TBC modeling research, there are at least three
important aspects worth considering. The first is to improve the
use of longitudinal measurements. Although there are over
20,000 longitudinal measurements in the dataset, the LBCC team
[1] ignored these within-individual dependencies to avoid conver-
gence issues. However, these within-individual dependencies can
provide unique information that can be used to mitigate cohort
effects. Therefore, even when the total sample size is very large
and longitudinal measurements account for only a small propor-
tion, it is still relevant to fully exploit longitudinal dependencies.
The second is to scale towards multivariate distributions, which
is an inevitable direction for future TBC research to reveal multi-
variate characteristics of normative brain development by simulta-
neously accounting for multiple predictor and response variables.
To avoid the curse of dimensionality, it may be necessary to impose
additional structural assumptions for the multivariate distribu-
tions. The third consideration is to develop Bayesian methods for
specific populations with moderate sample sizes to reduce the
sampling cost of TBC. The priors could be brain charts derived from
very large sample sizes, or previously constructed brain charts for
the same specific population (to update the charts). The methods,
although similar to estimating statistical offsets of brain charts to
attenuate scanner effects for a new study (see Ref. [1] for a more
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detailed discussion), allow the charts to be fundamentally updated
and are therefore different in spirit. The key issues to be investi-
gated are the construction of a parameter to determine the propor-
tion of new data contributing to the updated brain chart, and the
algorithms to achieve optimal hyperparameters under specific
criteria.

With brain charts constructed, one can assess the predictive and
longitudinal validity of the charts by evaluating within-individual
longitudinal variability of centile scores. Nevertheless, it should
be noted that high variability of centile scores within healthy indi-
viduals does not necessarily indicate issues with data quality, reli-
ability, or modeling approaches, but may also be with the validity
of the metric in terms of clinical applications. As suggested in
Cornerstone 3, by linking variability in centile scores with genetic
and environmental factors as well as behavioral traits, we will gain
new perspectives to explore associations that were previously
obscured by age effects and thus usher in a paradigm shift in
BWAS.

Cornerstone 6: establish a whole chain of open platforms to facili-
tate interdisciplinary research and translation. Open and easy-to-use
platforms can promote collaborations among multiple parties to
facilitate TBC research. In this regard, the LBCC team developed
an interactive open resource (http://www.brainchart.io) to visual-
ize and update brain charts, providing a paradigm for such efforts.
One can expect that even if TBC have been constructed, making
them easily accessible and understandable to clinicians and other
users remains a challenge. To this end, online platforms will help
in understanding, using, and disseminating TBC resources. Here,
the point to emphasize is that TBC research entails collaborations
from the very beginning. For instance, innovative methodological
research will support TBC in terms of optimizing data acquisition
and processing, enhancing the reliability and validity of extracted
metrics, identifying and removing confounds, and improving sta-
tistical models. Interdisciplinary research with physics, computer
science, and statistics, as well as the open science practices in shar-
ing data and codes, will accelerate this process, leading to an
urgent need to develop a whole chain of open platforms for inter-
disciplinary research and translation.

The collection of high-quality and representative data according
to the sampling strategies especially requires extensive collabora-
tions. To achieve this, in addition to the optimization of sampling
strategies, it is essential to obtain policy and funding support
and, most importantly, to gain public understanding and trust in
data acquisition, as well as a wide range of willingness to partici-
pate in the project. For example, neuroimaging data acquisition
on fetuses, infants, and toddlers remains sparse due to safety con-
cerns, which not only hinders the community from assessing and
improving the reliability and validity of methodologies for this crit-
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ical period of neurodevelopment, but also poses a significant chal-
lenge to acquiring large representative samples in these rapidly
developing age groups. In-depth cooperation among relevant par-
ties and brain science popularization are necessary foundations
to overcome the above challenges.

Overall, we anticipate a whole chain of open platforms based on
inclusive protocols, consisting of data collection, sharing, and man-
agement systems (for Cornerstone 1), server clusters for both
exploratory and standardized data processing (for Cornerstones 2
to 4), pipelines for building and updating models (for Cornerstones
4 and 5), and modules for deriving centile scores of individual brain
metrics and generating personalized reports (translating TBC into
applications), among other components. In this chain for TBC
research, collecting and sharing data is the prerequisite, refining
data processing algorithms and statistical modeling methods is
the foundation, and translational research and validation is the
key. With the platforms established and continuously upgraded
[1,4,17], TBC research can be accelerated, and translational applica-
tions of TBC can further facilitate the collection of representative
samples, foster developmental population neuroscience, and lead
to better and more powerful TBC.
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