
Trends
Changes of the structural connectome
appear to precede those observed in
functional connectomics. Charting tra-
jectories and atlases of these changes
across the life span are becoming
available.

Disparities of observations across life-
span studies likely reflect differences in
study design and analytic approaches.
Both open big-data sharing and stan-
dardized connectomics warrant suc-
cesses of reconciling such differences.

Potential sources of artifact must be
addressed before visions of compre-
hensively mapping the connectome
across the life span can be realized.

Network neuroscience demonstrates
the value of modeling spatial proximity
and topological homophily in genera-
tive connectome models across the life
span.

Neuromodulation connectome
approaches hold great potential for
deciphering changes in causal rela-
tions, as well as probing and altering
plasticity across the life span.
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Connectomics has enhanced our understanding of neurocognitive develop-
ment and decline by the integration of network sciences into studies across
different stages of the human life span. However, these studies commonly
occurred independently, missing the opportunity to test integrated models of
the dynamical brain organization across the entire life span. In this review article,
we survey empirical findings in life-span connectomics and propose a genera-
tive framework for computationally modeling the connectome over the human
life span. This framework highlights initial findings that across the life span, the
human connectome gradually shifts from an ‘anatomically driven’ organization
to one that is more ‘topological’. Finally, we consider recent advances that are
promising to provide an integrative and systems perspective of human brain
plasticity as well as underscore the pitfalls and challenges.

A Connectome's Life Span
The connectome (see Glossary), commonly defined as the wiring diagram of the brain and its
functional interactions in their entirety, is an invaluable tool for cognitive neuroscience to
catalog the rich phenotypic variation amongst individuals and clinical populations [1–4]. Age
and maturational status are the most basic and arguably robust sources of neurobiological
variation in the connectome, motivating the need for life-span perspectives [5]. In this regard,
connectomics studies have mapped the developing brain to inform models of neurodevel-
opment [6,7], adulthood plasticity [8], as well as the aging brain to enhance our understanding
of neurocognitive decline [9,10]. The integration of complex network analysis into the study
of each of these stages of the life span has helped to advance a systems-level understanding
of organizational changes in these periods [11–14]. However, at both the levels of individual
brain regions and the network as a whole, great inconsistencies on the age-related changes
of the human connectome exist in the literature [13,15,16]. In part, this is attributable to
the fact that these studies of distinct periods of the life span tend to occur disconnected from
one another, missing the opportunity to test integrated models of brain organization across
the entire life span [17]. How does the human connectome change across the life span? To
answer this scientific question, we will discuss the importance of life-span human connec-
tomics, propose a computational modeling framework for investigating changes in connec-
tome organization over the life span by systematically surveying previous studies, and
highlight the challenges and promises in mapping the life-span changes of the human
connectome.

Why Life-Span Connectomics?
A number of motivations exist for mapping the human connectome and its functional interactions
across the life span. First, the comprehensive characterization of development, maturation, and
aging processes will allow researchers to identify similarities and differences among processes
observed at different times in the life cycle. Already, a number of studies have suggested that
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development and aging bring about opposing changes in brain organization, with development
characterized by increasing long-range connectivity [18] and hemispheric specialization [19],
and aging characterized by opposite trends [15]. Although intriguing, such findings raise a range
of questions regarding whether healthy aging is merely an ‘undoing’ of brain maturation
processes, or a complex interaction of multiple distinct processes [e.g., a loss of integrity in
the white matter (WM) architecture, decreased neuronal cell size, decreases in neuronal firing
strength, reduction in key neurotransmitters such as dopamine, reductions in neuroplasticity]
[20]. Related question is a range of queries about pathologic aging and the unique impacts
disease processes have on the declining architecture [21], as well as the interventions aimed at
slowing aging processes [22].

An arguably more complex, though an essential goal of life-span connectomics, is the mapping
of neural systems underlying cognition and behavior across the life span. Numerous studies
have demonstrated age-related changes in the neural correlates of cognition and behavior (e.g.,
intelligence quotient, working memory, anxiety) [23–25]. Any effort aiming to account for
interindividual variations in these domains must take into account the developmental status
of the individuals being assessed to meaningfully understand the differences observed [26]. It is
important to note that the ‘uniqueness’ observed for an individual at any given point in his/her life
cycle represents the outcome of an entire personal history of biological and environmental
experiences [6].

Finally, from the perspective of attempting to achieve clinically useful applications for neurosci-
ence, a key goal of the medical community is to create neurobiologically sound growth curves for
the brain that are akin to well-established height and weight curves used to monitor physical
development [27]. Such brain-based curves can be used to characterize phenomenological
changes associated with the onset of varying forms of mental health and learning disorders [28],
as well as to predict the developmental status (i.e., age-expected values) of an individual brain's
structure [29] or function [30]. The fact that 75% of mental illnesses have their origins prior to age
24 provides a strong motivation to map brain growth in early life [31]. However, phenomena such
as depression can occur throughout the life span (i.e., pediatric depression, adult depression,
geriatric depression) [32]. Life-span perspectives can help reveal commonalities and differences
among pathophysiologic processes that manifest similar symptom profiles at different stages in
life. From a neurological perspective, brain maturation and aging curves may prove useful for
identifying factors that can mitigate neurocognitive decline (e.g., cardiovascular fitness) and
potentially identify optimal periods for intervention [33].

What Are the Essential Components of a Life-Span Study?
By surveying relevant studies conducted during past 10 years (2007–2016) based upon large
samples (N � 100) of human brain MRI images spanning a minimum segment of 35 years of the
life cycle (not limited to studies that included a measure of connectivity), we summarize key
aspects of life-span studies to date in Figure 1. First and foremost, the experimental design of a
study, especially the age span and sampling (i.e., cross sectional vs. longitudinal) strategy,
determines its utility for life-span analyses. Most life-span studies cover a specific age interval
using a cross-sectional design. This is primarily due to the time requirements of a true
longitudinal design attempting to map the entire life span. Structured multicohort designs
[34], which leverage the strengths of both cross-sectional and longitudinal designs, are emerg-
ing as practical and powerful approaches to examine life-span changes. One of the most
important factors in the examination of life-span connectome changes is the choice of metrics for
assessing brain organization. This issue is particularly challenging for connectomics given that
the test–retest reliability, reproducibility, and validity of some of the most frequently employed
connectomics measures are yet to be fully investigated and well established [35,36]. These
issues are attracting increasing attention (Box 1).
Trends in Cognitive Sciences, January 2017, Vol. 21, No. 1 33

mailto:zuoxn@psych.ac.cn
mailto:zuoxinian@gmail.com
mailto:Michael.Milham@childmind.org
http://www.twitter.com/zuoxinian


Glossary
Complex network analysis:
characterization of real-world
networks with nontrivial properties
using tools from graph theory and
statistical physics (among others).
Connectome/Connectomics: a
complete set of neural elements (e.g.,
neurons, brain regions) and their
interconnections (e.g., synapses, fiber
pathways, functional connections).
Functional homotopy: the high
degree of synchrony in spontaneous
activity between geometrically
corresponding interhemispheric (i.e.,
homotopic) regions is a fundamental
characteristic of the intrinsic
functional architecture of the brain.
GAMLSS: a class of statistical
models to extend the simpler
generalized linear models and
generalized additive models (GAMs)
by allowing the values of a
dependent variable to be related to
explanatory variables with a
probability distribution characterized
by three parameters of location,
scale, and shape (LSS), namely,
GAMLSS.
Generative network model: a
general framework that involves the
use of simple wiring rules to
construct synthetic networks whose
properties are similar to those of real-
world networks.
Graph theory: a branch of
mathematics that deals with systems
of elements (i.e., nodes, vertices) and
their dyadic interactions with one
another (i.e., edges, connections).
Hub/Rich club: a hub is a highly
central node that occupies an
influential position within a network. A
rich club is a set of hubs that are
more densely interconnected to one
another than expected by chance.
Long-term potentiation (LTP)/
Long-term depression (LTD):
terms used to describe lasting
activity-dependent changes in
neuronal synaptic efficacy. LTP refers
to changes that increase synaptic
efficacy, while LTD refers to changes
that decrease synaptic efficiency. LTP
and LTD occur throughout the brain,
and are key factors in neural
plasticity.
Modularity/Efficiency: modularity
refers to the propensity for a network
to be divisible into internally dense,
externally sparse subnetworks known
as modules. Efficiency measures the
ease with which network nodes can
exchange along shortest paths.

Box 1. Reliability and Validity in Connectomics

Why Is the Establishment of Test–Retest Reliability Critical?
Test–retest reliability is commonly defined as the variation in measurements taken by a single person or instrument on the
same item, under the same conditions, and in the same period. The quantification of test–retest reliability is critical in the
selection and optimizations of measurements because it places an upper bound on their utility in detecting both
interindividual differences (e.g., for biomarker discovery) and intraindividual changes (e.g., for longitudinal examinations).
For any attempt to map connectome trajectories across the life span in a way that can capture meaningful differences
among individuals, the establishment of reliable indices of the connectome is a rate-limiting step.

Current Perspectives of Reliability for Human Connectomics
The reliability can be sensitive to the specific networks/connections and the factors related to scan duration, sampling
rate, and analytic methodology (see [36] for a review), hindering the development of consensus standards. To address
this challenge, the Consortium for Reliability and Reproducibility was launched in early 2014 [133] and provided invaluable
open resources to generate rich estimates of reliability and reproducibility by including a variety of data-acquisition
procedures and experimental designs.

Looking Beyond Test–Retest Reliability for Connectomics
Reliabilities across imaging scanners, protocols, preprocessing steps, and analytic strategies are rarely explored in brain
connectomics. Recent initiatives such as the Brain Genomics Superstruct have demonstrated the ability to minimize
variation across imaging sites [134]. However, such coordination is not always feasible and, if not accounted for, can
compromise the reliability of findings when different scanners are used to assess the same participants. Even on the
same scanner, a number of factors can change over time (e.g., implementation of a data-acquisition protocol, software
version, hardware replacements), potentially compromising reliability. Fortunately, large-scale multimodal imaging
initiatives and heterogeneous data-sharing efforts (Box 3) are helping to motivate approaches to minimize or correct
for such differences.

Balancing Reliability with Validity
Potential confounding signals in brain imaging data can differ as a function of age across the life span (Box 4), and
researchers must balance reliability with validity. The varying controversies surrounding motion, and its potential ability to
drive age-related connectome differences, motivate the need to consider the validity of a measure. To facilitate this
process, a growing array of noise correction methodologies is emerging; additionally, machine learning-based frame-
works, such as NPAIRS [135], are highly informative.
Once sample metrics are derived from the data, statistical methods to model trajectories are
required to quantitatively characterize life-span changes of the metrics. To date, the literature has
largely relied on a relatively simplistic set of parametric methods (e.g., polynomial curve fitting, t
tests, and analysis of variance) to model differences across the life span. However, recent work
has introduced more complex methods capable of accurately characterizing local changes (i.e.,
within a very small age interval) in life-span trajectories [37,38]. Box 2 provides more details on
these nonparametric/semiparametric methods and guidance on their use.

Empirical Observations from MRI-Based Life-Span Studies
Initial insights into changes in brain structure and organization associated with development,
maturation, and aging came from the mapping of relatively nonspecific measures, such as total
brain weight and intracranial volume [33,39]. Each of these indices shows dramatic increases
over the first 6 years of life, by which time they reach 90–95% of adult values. While the next 6
years are characterized by continued increases, though at a slower rate, late adolescence
shows the beginning of a reversal, with progressive decreases that continue throughout the life
span. As more fine-grained regional analyses focused on gray matter (GM) emerged, the
inverted U-shape trajectories were observed throughout much of the brain, though with
higher-order regions (e.g., prefrontal cortices) showing slower increases during development
and more rapid losses during aging, relative to sensorimotor cortices [40,41]. Of particular
relevance to our discussion of the connectome, studies attempting to differentiate WM from GM
found stark differences in their life-span trajectories [42,43]. In contrast to GM, WM volumes
increased into the third and fourth year of life, before exhibiting decreases – a finding that is
commonly interpreted to reflect the prolonged process of myelination [44]. Importantly, at each
end of the life span, factors capable of modifying the timing of trajectories have begun to be
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Resting-state fMRI: a method of
functional brain imaging that can be
used to evaluate spontaneous neural
activity that occurs when an individual
is not performing an explicit task.
Single-cohort/Multicohort design:
a cohort design is commonly used
for a longitudinal study where one
(called single-cohort design) or more
(called multicohort design) groups of
people are followed up.
Small world/Scale free: ‘small
world’ networks balance attributes of
segregation and integration (i.e., high
clustering and short path length),
facilitating both localized information
processing and network-wide
integration of information. Scale-free
networks exhibit a power-law degree
distribution (most nodes make a
small number of connections; a small
number of nodes make
disproportionately more connections).
Wiring cost: anatomical connections
require material and energy for their
formation, maintenance, and usage in
signaling. Assuming that such costs
increase monotonically with length
(longer connections are more costly),
the wiring cost of brain can be
approximated by the sum of its
connections’ lengths.

Box 2. Advanced Methods for Charting Developmental Trajectories

An array of advanced methods has been developed to model growth curves in the fields of pediatric care and public
health. However, as indicated in Figure 1, a survey of the connectomics literature from 2007 to date shows a heavy
reliance on more simplistic parametric or semiparametric trajectory models to infer or reconstruct the life-span devel-
opment trajectory. Recent work has signaled the need to move beyond these approaches in efforts to map the life-span
trajectories. Several have explored the potential utility of machine-learning techniques (e.g., support vector regression,
relevance vector regression), which can provide estimates of an individual's brain age relative to the chronological age
approaches focused on the prediction of an individual's ‘brain age’; the two values can be combined to form a
‘maturation index’ [29,30,67]. Although insightful, these approaches do not provide a true equivalent of pediatric growth
charts for weight or height. Following the model of the World Health Organization in the development of their Child Growth
Standards, two recent studies highlighted the use of generalized additive models for location, scale, and shape
(GAMLSS) [37,38], in which a linear predictor is the sum of smooth functions of covariates, rather than simply covariates.
This representative framework allows for the estimation of an entire distribution of a measure at each age. The GAMLSS-
derived charts are akin to physical pediatric growth charts and thus, for any given brain measure, can yield a quantile rank
or percentile for an individual, and can also be generalized to allow for comparing groups based on their rank maps.
These more sophisticated approaches have shown promise to become neuroscientifically and clinically useful tools over
time, as necessary data are amassed.
identified (e.g., poverty and mental illness during development; aerobic fitness and degenerative
processes during aging) [45–47], providing initial insights into interindividual variation. As a
broader range of methodologies have emerged for mapping GM/WM organization across the life
span, a more refined picture has begun to emerge [48,49]. Anatomical geometry and morphol-
ogy serve as the basis of the brain connectivity [50], and thus their changes over the life span
motivate investigations on the age-related changes of the brain connectivity across the human
life span.

Diffusion MRI-based methodologies, which provide more specific measures of WM con-
nectivity organization [e.g., fractional anisotropy, mean/radial diffusivity, longitudinal relaxa-
tion rate (R1)], have largely confirmed the findings of the inverted-U trajectories for WM
development [51–53], though they have also provided greater differences into differential
timing patterns across tracts (e.g., [52,54,55]). In particular, phylogenetically primitive sen-
sorimotor brain structures were found to exhibit the most rapid development and greatest
preservation, while more phylogenetically advanced structures (e.g., prefrontal cortex)
showed slower development and faster declines, suggesting a first-in-last-out pattern of
development across the life span [52]. Questions remain about the biological significance
of the changes observed. For R1, which appears to be associated with measurable changes
of macromolecule tissue volume across the life span, developmental findings appear to
directly suggest that differences in timing among tracts are directly attributable to growth and
loss of tissue [55].

Complementing structural perspectives of life-span development for the connectome are those
emerging from the burgeoning functional connectivity literature. While early fMRI efforts strug-
gled with the challenges of designing task activation paradigms that could appropriately probe
brain function across a range of developmental levels, the emergence of resting-state fMRI
(rfMRI) removed such barriers [16,56]. Early work tended to focus on development and aging in
isolation [57,58]. Pediatric studies consistently revealed age-related increases in long-range
connectivity and decreases in both short-range and interhemispheric connectivity [19,59,60],
even after accounting for head motion artifacts [61]. By contrast, aging studies revealed
consistent patterns of decreases in long-range connectivity [15,62], although these did not
converge into consistent patterns at the network level [63–66]. Inspired by the seeming parallels
with findings from the structural literature, an initial study of the life span demonstrated quadratic
U-shaped life-span trajectories for functional homotopy [20]; later work expanded these
efforts to characterize inter-regional functional connectivity [67], as well as spontaneous activity
amplitude [37]. Compared with the age-related changes of both morphology and structure
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Figure 1. Visual Summary of 10-Year Large-Scale Empirical Life-Span Brain Studies. A total of 101 large-scale (N � 100) studies published between 2007 and
2016 are summarized as distribution histograms of the publications according to their imaging modality, sample size, age span (i.e., min age minus max age), as well as
pie charts of publications regarding magnetic field strength, sample design, and trajectory models. ANCOVA, analysis of covariance; dMRI, diffusion MRI; GAMM,
generalized additive mixed model; LOESS, local regression; rfMRI, resting-state fMRI; sMRI, structural magnetic resonance imaging; tfMRI, task fMRI.
across the life span, functional connectivity changes demonstrated greater richness of regional
differences of their life-span developmental trajectories [20,67]. Similar to the structural literature,
connection-specific differences in U or inverted U trajectories were observed, with some
showing differences in timing.

While relatively few efforts have attempted to directly link age-related increases in functional
connectivity to structural connectivity, a few patterns are readily discernible from the literature.
First, the trajectories of functional connectivity are more in line with the timing of WM changes
than GM, with a reversal taking place well past the first two decades of life. Second, declines in
functional connectivity appear to occur notably later in life than what is reported in the structural
connectivity [20], which may suggest that the brain actively maintains patterns of functional
interactions for as long as possible, despite changes in the underlying structural integrity of the
underlying connectome.

Recent work has shifted focus onto the properties of the network as a whole by characterizing
its organization using tools from network science and graph theory [68–70]. The connecto-
me's modular organization, in particular, has generated much interest, in part due to the
36 Trends in Cognitive Sciences, January 2017, Vol. 21, No. 1



important role it is believed to play in shaping communication patterns both within and between
functional systems. Interestingly, the extent to which modules are segregated with one another
appears to fluctuate over the course of the human life span. The presence of aging-related
decreases in modularity was first demonstrated in connectivity networks derived from cortical
thickness; the work highlighted decreases in the intramodule connectivity and increases in the
intermodule connectivity [71] – essentially, a pattern suggestive of dedifferentiation. Interest-
ingly, these findings are mirrored in the task-based aging literature where, compared with
younger adults, older adults show reduced differentiation in the hemisphere recruited to
perform a task (a finding also reported in children [72]). For example, in a nonverbal task
probing inhibitory control and attention, younger adults showed right-lateralized frontal recruit-
ment, while older adults showed recruitment of both hemispheres [73]. However, the inter-
pretation of this pattern of results is contentious, with some suggesting that this pattern
represents a compensatory process in older adults [74], while others posit that it reflects
dedifferentiation [73]. Functional connectomics have also attempted to address the question of
how modularity changes during development and aging [63,64,75]. However, findings regard-
ing modularity have proven to be variable across studies of developing brains. The observation
that within-module connectivity decreases for long-range networks such as the default network
was consistent across development and aging [58,70], while increases and decreases of
within-module functional connectivity (FC) were observed for same networks as well as those of
between-module FC for same pairs of networks [63,64]. A recent study also argued that the
default network remained relatively stable to a parietal memory network, which is spatially
overlapped and temporally correlated with the default network but demonstrated significantly
reduced FC profile [66].

Some recent studies have attempted to directly probe changes in network efficiency across
the life span. Such work builds on the study of small world characteristics of the connectome,
engendering high efficiency at both the local and global scales. Both structural [76] and
functional [75] connectomics studies have reported linear decreases in local efficiency from
adulthood into old age, while global efficiency appears to remain unchanged. When focusing on
development, a somewhat inconsistent pattern of results emerges, with local and global
efficiency exhibiting both age-related increases [77] and decreases [78].

Overall, it is fair to say that while there are converging themes emerging across studies, the life-
span connectomics literature is marked by a number of discrepancies in findings and inter-
pretations. Multiple factors contribute to these discrepancies. First, there are methodological
differences in the definition of network nodes (i.e., cortical areas) and edges (i.e., connections
between areas) [36,79,80] (e.g., large-scale anatomical/structural parcellation applied to func-
tional data with failure of capturing the rich regional variation in functional specialization [81]).
Second, it is inherently difficult to compare and relate findings across different imaging modalities
(e.g., connectomes derived with diffusion MRI and rfMRI). Functional connectivity matrices tend
to be dense due to reliance on correlation scores that allow for ‘indirect’ connections, which do
not exist in structural connectivity; as such, functional and structural perspectives of the
connectome are inherently distinct. Finally, there has been a lack of studies designed to
comprehensively capture neurodevelopment, maturation, and aging using the same scanner
and acquisition protocol. Efforts such as the Nathan Kline Institute-Rockland Sample (NKI-RS;
ages 6–85 years), the upcoming Human Connectome Lifespan Project, and the Chinese Color
Nest Project are offering hope in this regard (Box 3). Initial studies using the NKI-RS have
suggested the presence of linearly decreasing trajectories for both modularity and efficiency, as
well as an inverted U-shaped trajectory of intramodule connectivity and U-shaped trajectory of
intermodule connectivity [63–66]. The life-span changes of both functional segregation
(decreased within-module connectivity) and integration (increased between-module connectivity)
have also been replicated [65].
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Box 3. Open Resources for Human Life-Span Connectomics

A large sample of the human brain acquired with high-resolution MRI techniques is essential for a life-span connectome
study. A big data framework that builds on such open resources may rapidly accelerate the progress of discovery science
of human life-span connectomics and yield better understanding of the underlying brain mechanisms. This need is
increasingly addressed through several promising open resources for human life-span connectomics studies, which are
documented in detail below.
(i) Nathan Kline Institute-Rockland Sample (NKI-RS): This is an ongoing, institutionally centered endeavor aimed at

creating a large-scale (N > 1000) community sample of participants across the life span. Measures include a wide
array of physiological and psychological assessments, genetic information, and advanced neuroimaging data
obtained from a single scanner with multiple modalities. Anonymized data are publicly shared and updated on a
quarterly basis at http://fcon_1000.projects.nitrc.org/indi/enhanced/index.html

(ii) Human Connectome Project (HCP) Life Span Sample: The WU-Minn HCP consortium is acquiring and sharing pilot
multimodal imaging data acquired across the life span, in six age groups (4–6, 8–9, 14–15, 25–35, 45–55, and 65–
75 years) using scanners that differ in field strength (3T and 7T) and maximum gradient strength (70–100 mT/m). The
scanning protocols are similar to those for the WU-Minn Young Adult HCP, except shorter in duration. The
objectives are to enable estimates of effect sizes for identifying group differences across the life span, and to
enable comparisons across scanner platforms, including data from the MGH Lifespan Pilot Project. Both the initial
data including unprocessed image data and the minimally preprocessed data have been shared with the public
since early 2015 at http://lifespan.humanconnectome.org.

(iii) CCNP Life Span Sample: This ongoing project is supported by Chinese Academy of Sciences, Natural Science
Foundation of China, and the Ministry of Science and Technology of the People's Republic of China. The CCNP aims
at collecting large-scale life-span data of the human brain and behavior (1200 participants) via a cross-sectional and
longitudinal mixed sampling design over a span of 10 years (2013–2022). Each participant visits three high-field (two
3T and one 7T) MRI scanners located at the Institute of Psychology and the Institute of Biophysics, Chinese
Academy of Sciences, generating five scans including 2-week test–retest data at the two 3T scanners. As a trial
sample using the CCNP design, devCCNP includes three waves of multimodal neuroimaging data from 198
developing patients (6–18 years) across 5 years (2013–2017). The data from devCCNP will be released to the public
in early 2017 (http://zuolab.psych.ac.cn/colornest.html).
Computational Models of Life-Span Connectomics
Empirical studies of life-span changes in the human connectome have described the evolution of
highly connected hubs and rich clubs, along with characteristic age-dependent patterns of
segregation and integration among functional modules or resting-state networks. Such findings,
while informative, are fundamentally descriptive in nature. A more mechanistic understanding of
how these properties develop and evolve would be highly desirable and holds promise for early
intervention in neurodevelopmental disorders, for example, by predicting which individuals
are susceptible to deviations from normal trajectories and when. Complementing these descrip-
tive accounts are theoretical studies that have proposed a range of mechanistic generative
network models for explaining the growth and evolution of connectome topology. In the
context of complex networks, generative modeling refers to a set of mathematically and
algorithmically defined approaches in which simple wiring rules are used to create synthetic
networks with the same features as those encountered in real-world networks. For example, the
Watts–Strogatz and Barabási–Albert models explain the origin of small world [82,83] and
scale-free [83] networks, respectively.

Brain networks, however, are not well described by either of these canonical models. Rather, the
majority of generative models for brain networks have addressed the important role played by
the network's spatial embedding and cost conservation, for example, a model of the macaque
cortico-cortical network that penalizes the formation of long-distance connections [84,85]. Other
generative models have combined spatial (cost preserving) with topological (performance
enhancing) factors. In such models [86,87], rules that promote links among nodes with matching
topological properties have been shown to add significant precision to the match between
synthetic and empirical networks.

Recently, an extensive set of generative models on data collected from individual human
participants was tested across three different data sets [88]. The best-fitting models combined
spatial and nonspatial factors based on the overlap of two node's connection patterns – stable
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links were more likely to form between nodes with greater similarity in terms of the list of their
connection partners, a form of ‘homophily’. Model fitting to individual human data yielded a
highly compressed account of the relative balance of spatial and topological factors (expressed
by two key parameters). Applying this generative model to the human life span demonstrated
significant trends in the relative power of spatial and nonspatial factors to account for con-
nectome topology. With age, the degree to which spatial separation in the brain imposed a
penalty or cost on structural connections weakened, and networks become progressively more
difficult to fit. This finding suggests that changes in the topology of the structural connectome
across the life span exhibit characteristic patterns and indicate a gradual shift from a more
‘spatial brain’ to one where a trade-off between spatial and nonspatial generative rules increas-
ingly favors the latter over the former (Figure 2).

Finally, as with any modeling framework, it is essential to avoid overinterpreting generative
models. Multiple models (i.e., distinct wiring rules) might offer equally good explanations of the
observed network data. Alternatively, the best-fitting solution may be at odds with some known
neurobiology. Future work is needed to add more detail to this emerging picture. More refined
geometric or anatomical rules and generative mechanisms could be employed and tested
against nonspatial factors [89,90]. More accurate connectome reconstruction methods should
provide more sensitive and reproducible structural network data sets. More biologically based
generative models that involve rules governing connection growth and plasticity should be
applied to life-span data (e.g., [31,78]). Jointly, descriptive and generative lines of research are
beginning to provide a unified framework for understanding the progression of individual
differences in the brain network organization, as well as their linkage to variations in behavior
across different periods of the life span.

Toward an Understanding of Plasticity across the Life Span
As mentioned earlier, a key goal of life-span studies is to identify modifiable targets for
interventions aiming to alter pathologic trajectories. Central to this notion is the idea of plasticity,
or the ‘intrinsic property of the nervous system enabling rapid adaptation in response to changes
in an organism's internal and external environment’ [91]. Central nervous system (CNS) plasticity
decreases across the life span [92,93], and may contribute to cognitive decline [92]. Variability in
brain plasticity can provide both a potent biomarker of CNS development and decline across the
life span [91] and a target for interventions (e.g., cardiovascular exercise [94], brain stimulation
[95,96]). Plasticity is yet to be carefully examined within a life-span sample.

CNS plasticity is classically associated with changes in long-term potentiation and long-term
depression at the cellular level [96]. From an intervention perspective, one of the most effective
approaches to modifying brain plasticity in nonpathologic populations to date remains cardio-
vascular fitness or cognitive training [45]. Cardiovascular fitness training has been shown to be
able to increase plasticity in non-human models [97], and is inferred to be responsible for
beneficial changes in older human models, such as increased GM and WM volumes [98],
improved frontal lobe function, frontoparietal cortical recruitment, and functional connectivity
[99–101].

In recent decades, the emergence of brain stimulation methodologies such as theta-burst
repetitive transcranial magnetic stimulation [100] have provided a mechanism for probing brain
plasticity in a manner of minutes, as well as attempting to modify it over repeated sessions. In
addition, single-pulse transcranial magnetic stimulation probes have begun to demonstrate their
value in establishing and/or testing causal models of interactions within the connectome [102].
Arguably, while the past and present eras of connectomics have focused largely on the mapping
of the human connectome in common settings, the next generation of studies will work to shift
the focus to experimentally probing and establishing causality within the connectome. In addition
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Figure 2. Generative Models of Life-Span Connectomes. With a simple wiring rule [88], synthetic connectomes can
be generated that embodied many of the same properties as observed connectomes. (A) The wiring rule was based on two
countervailing forces: homophilic attraction and a spatial penalty. Homophily implies that brain regions with many common
neighbors are more likely to connect to one another. In this example (top left), regions A and B have two common neighbors
(blue), while A and C have only one (red). Under a homophilic attraction mechanism, it would be more likely for a connection to
form between nodes A and B than between nodes A and C. The spatial penalty (top right) embodies the brain's drive to reduce
its wiring cost by favoring the formation of short-range connections. Here, because B and C are separated by a shorter
distance than A and C, it would be more likely for a connection to form between nodes B and C than between nodes A and C.
When applied to life-span data, the authors observed that the effect of the spatial constraint was stronger in younger brains
than in older brains. (B) The results of this study indicated that, with age, spatial constraints and the ability for the generative
model to fit the observed data decreased monotonically. The homophily exhibited no statistically significant age effect.
to brain stimulation methodologies, the recent emergence of powerful genetic techniques
capable of providing researchers with tight control of specific circuits or cell lines (e.g., opto-
genetics and chemogenetics) is promising to expand the experimental reach of studies focused
on life-span causality.

Pitfalls and Challenges
The expected merits of life-span connectomics research are made clear by the growing number
of studies and increasing investments (e.g., NIH Human Connectome Lifespan Project [103]).
However, a number of methodological caveats, assumptions, and obstacles must be addressed
for the field to reach its full potential. As previously discussed (Box 4), the potential for artifactual
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Box 4. Piecing Together Life-Span Data across States and Artifacts

Initial life-span studies have attempted to examine human brain function and structure from childhood through the older
adult/elder years, an endeavor that has required consideration of a number of potential confounds and logistical
challenges along the way (Table I). One issue arises due to age-related changes in motion [106,107], which can impact
image quality and registration for brain imaging [104]. The head motion in scanner contains individual states (i.e., short-
time scale), which induce artifactual findings for functional imaging [108], while its trait (i.e., long-term) components bring
challenges of neurobiological interpretation regarding its links to individual differences in connectomics [105,109]. Other
factors, such as age-related differences in cardiovascular health and neurovascular coupling properties also present
challenges in the interpretation of findings [136]. However, the ultimate goal of life-span studies is to examine the brain
from its fetal origins to old age. This goal raises even greater concerns due to the need to carry out imaging across
differing states – some of which inherently differ with respect to levels of arousal/consciousness (i.e., fetal, sleep) and
motion (i.e., fetal). Fortunately, a number of recent innovations and insights are providing hope for our ability to overcome
these challenges. First, for structural imaging, prospective motion assessment and correction strategies are evolving;
examples include navigator-based imaging. Second, researchers are working to develop age-specific templates to guide
anatomical registration, as well as strategies for combining images from different developmental periods in a common
stereotactic space. Third, researchers are working to demonstrate the reproducibility of findings for functional imaging
across fetal, sleep, and awake states, as well as devising strategies for optimizing the between-state reliability of
assessments for the same individual. In addition, for those interested in examining the brain's responses to external
stimulation, alternative paradigms, such as naturalistic stimulus (e.g., movie) viewing, are emerging, which can be applied
to individuals of any age range.

Table I. Potential Confounds of the Human Connectome across Life Span

Developmental
period

Imaging
state

Motion Brain size
(% total
postnatal
growth)

Anatomical
stability

Heart rate,
beats/min

Respiratory
rate,
breaths/min

Fetal Fetal Severe NA Low 110–180 35–45

Infant Sleep Low–Moderate 10–40 Low 80–160 20–50

Toddler Sleep Low–Moderate 40–70 Low 80–120 20–30

Early childhood Awake Severe 70–90 Moderate 70–110 20–30

Late childhood Awake Low–Moderate 90–100 High 60–100 20–30

Adolescence Awake Low 100 High 60–100 12–30

Young adult Awake Low 100 High 50–80 12–30

Middle adult Awake Low 100 Moderate–high 50–80 16–20

Aging adult Awake Low–Moderate 100 Low 50–80 16–20
findings to arise from age-related differences in non-neural signals (e.g., head motion [104–109],
physiological parameters [110]) or image-processing parameters (e.g., anatomical template
definitions [79,81], denoising strategies [111–113]) remains a continuing concern. In addition,
constructs such as the global signal, which remains highly controversial due to questions about
whether its origins are neural [114–116], become even more challenging when one considers the
possibility of age-related differences across the life span [117,118]. A growing number of
strategies are emerging to overcome the various artifacts (e.g., independent component
analysis-based denoising strategies, statistical standardization) [119–121], allowing researchers
to continue to move forward. However, it may be equally important to pursue lines of transla-
tional research in non-human models that allow for a more direct understanding of the origins of
the signals captured by neuroimaging.

In addition to concerns about artifacts, the imaging community remains divided on what the
most promising MRI-based modality is for the study of life-span connectomics. This likely reflects
the reality that no single perspective of human brain development will suffice to capture entirety
of developmental, maturational, and aging phenomena. Our previous discussion of computa-
tional connectomics attempted to introduce a novel methodology for integrating functional and
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Outstanding Questions
Can we devise an integrative model of
the connectome and its life-span
dynamics capable of comprehensively
accounting for the broader range of
functional and structural indices, espe-
cially for common morphological mea-
sures? Related to this point will be the
challenge of identifying redundant and
unique features.

How can we best index changes in
neural efficiency associated with the life
span? Changes in neural efficiency rep-
resent a recurrent theme in the emerg-
ing literature, though they are typically
inferred or measured indirectly.

How feasible is it for us to generate the
big data sets and efficient statistical
methodologies to overcome differen-
ces in fMRI measurements of the con-
nectome? This will be crucial for
effectively linking findings from different
phases of the life cycle.

Can we map the dynamical brain–
behavior relationships across the life
span for the broader range of cognitive
and psychiatric variables? And how
can we accumulate the data needed
to develop predictive models to guide
interventions?
structural perspectives of the human connectome and its changes across the life span. Future
work will not only need to expand and mature such integrational methodologies, but also
increase consideration of additional modalities such as arterial spin labeling [122], which are
increasingly being used to capture developmental processes [123].

Beyond imaging methodologies, a number of considerations remain, especially questions
regarding the sampling strategies optimal to moving life-span connectomics forward – both
in the short term and in the long term. Cross-sectional studies can provide insights into the age-
related changes in the connectome across the life span most rapidly (see [7] for a review of the
varying design options), but are commonly confounded by sources of interindividual variation
that may be unrelated to age. Although longitudinal designs are best positioned to overcome
such confounds, they face a variety of logistical challenges. Most notably, single-cohort
designs might be optimal in reducing confounds of cross-sectional approaches, but they
are inherently impractical for the study of the life span due to time requirements. However, this
limitation may not apply in non-human models, in which the life span can be notably less than a
decade, depending on the population being studied. Multicohort studies are heralded as an
acceptable compromise, but face some of the same challenges as cross-sectional studies –

particularly, when not properly structured (see [34]).

Finally, the virtues and challenges of mapping developmental and maturational changes in brain–
behavior relationships must be underscored. Such information is crucial to our understanding of
the maturation of human brain function, as well as the development of clinically useful biomark-
ers. Early work has already demonstrated age-related changes in the neural substrates of
intelligence [26,124], reading [125], and working memory [126], as well as suggested method-
ologies for integrating age into brain–behavior analyses [37]. Central challenges that remain for
life-span connectomics are the development of phenotyping methodologies optimally suited for
integration with brain imaging data (e.g., [127]) and applicable to the life span (see [128,129] for a
discussion).
Can we identify modifiable connec-
tome-based targets for life-span inter-
ventions? And how can we refine
neuromodulation techniques suffi-
ciently to impact the trajectory of dis-
orders as they emerge, or even before?
Concluding Remarks
The mapping of brain–behavior relationships across the life span is a defining agenda for the next
decade. As highlighted in this review, the success of the research community in meeting such
lofty goals will rely on a combination of analytical and technical advancement, as well as
increased global collaboration as the field works to piece together the necessary data sets
and make reproducible science a reality. The life-span studies to date have worked to track
development from early childhood to aging; however, the neurobiological development of the
connectome begins prior to birth. Undoubtedly, the window of examination will expand over time
as fetal and infant imaging continues to mature [130–132]. Establishment of directional and
causal understanding of interactions within the connectome remains an important frontier.
Fortunately, increasingly powerful neuromodulation techniques capable of selectively manipu-
lating neural interactions are emerging. Although considerable work remains in pursuing this
goal, the potential payoff for neuroscientific and clinical communities would be enormous (see
Outstanding Questions).
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